STATIMENT OF COM STATES OF ANER

NOAA Technical Memorandum ERL WPL-131

INFRASOUND FROM DISTANT ROCKET LAUNCHES

Gary E. Greene A. J. Bedard, Jr.

QC 807.5 ·U6 W6 no.131

> Wave Propagation Laboratory Boulder, Colorado February 1986

|                | LIBRARY                                   |
|----------------|-------------------------------------------|
| and the second | APR 2 3 1986                              |
|                | N.O.A./<br><b>U. S. Dept. of Commerce</b> |

notional oceanic and atmospheric administration

**Environmental Research** Laboratories

QC 807.5 .46W6 70,131

NOAA Technical Memorandum ERL WPL-131

INFRASOUND FROM DISTANT ROCKET LAUNCHES

Gary E. Greene A. J. Bedard, Jr.

Wave Propagation Laboratory Boulder, Colorado February 1986



UNITED STATES DEPARTMENT OF COMMERCE

Malcolm Baldrige, Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Anthony J. Calio, Administrator Environmental Research Laboratories

Vernon E. Derr, Director

### NOTICE

Mention of a commercial company or product does not constitute an endorsement by NOAA Environmental Research Laboratories. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

## CONTENTS

Page

| ABS | TRACT                            | 1  |
|-----|----------------------------------|----|
| 1.  | INTRODUCTION                     | 1  |
| 2.  | EQUIPMENT AND ANALYSIS PROCEDURE | 3  |
| 3.  | SIGNAL CHARACTERISTICS           | 4  |
| 4.  | STATISTICS                       | 8  |
| 5.  | CONCLUDING REMARKS               | 13 |
| 6.  | REFERENCES                       | 14 |
| APP | ENDIX A. SIGNAL PROPERTIES.      | 17 |

#### INFRASOUND FROM DISTANT ROCKET LAUNCHES

Gary E. Greenel

A. J. Bedard Jr.

#### ABSTRACT

From 1959 through 1969 low-frequency (0.02-1.0 Hz) acoustic signals related to missile launches from Cape Canaveral were recorded by an infrasonic station in Washington, DC. Although the characteristics of these signals are considerably more variable than those from other known sources, the acoustic signatures can resemble those from sources both natural and man-made. A general summary includes 61 missile-related signals with specific examples of their features.

#### 1. INTRODUCTION

From the late 1940's to 1971 an infrasonic station in Washington, DC, continuously recorded pressure fluctuations from 0.001 to 1.0 Hz for the purpose of detecting acoustic waves (infrasound) from natural and man-made sources. Infrasound occurs from a great variety of atmospheric sources. It is a challenge to identify methods of distinguishing the various source mechanisms from the detailed character of the far-field acoustic signatures. Distin-

<sup>1</sup>Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80303.

guishing features have been identified for some sources such as geomagnetic activity (Chrzanowski et al., 1961) and earthquakes (Bedard, 1971; Young and Greene, 1982); for other sources, additional studies seem necessary to determine unique features. Infrasound measurements from the vicinity of geophysical sources have proved difficult to identify from the far-field acoustic signature alone. Although many of these sources can be well-characterized from their statistics or comparisons with independent data (e.g., meteor sightings [Bedard and Greene, 1981]), in a given situation dominant, identifying features (such as duration) may be masked by noise or be nonexistent. Acoustic energy from severe weather (Bowman and Bedard, 1971; Georges, 1973), volcanic explosions (Goerke et al., 1965), or the vicinity of mountains (Bedard, 1978) seems to have few unique acoustic features. Cook (1962), Cook and Young (1962), and Greene and Howard (1975) have reviewed properties of natural infrasound.

The characteristics of infrasound related to missile launches are much more variable than those from any other known source and are much more difficult to classify. A number of investigators have published studies of long range infrasound from missile launches. Donn et al. (1968), Kaschak (1969), and Kaschak et al. (1970) reviewed measurement techniques, some case studies, and statistical properties in a passband of about .1 Hz to higher frequencies. Multiple arrivals from both the launch and reentry region were noted in these studies which also found evidence of strong propagation effects on the measured waves. Kaschak et al. (1970) and Balachandran et al. (1971) concluded that infrasound generated aerodynamically (as opposed to the initial rocket firing) was detected at long distances. More recently Donn et al.

-2-

(1975) addressed propagation effects in more detail, finding that summer signals tend to have more low-frequency content than winter signals do. Tahira and Donn (1983) provided strong evidence for the aerodynamic generation of sound during booster reentry.

To distinguish missile-related infrasound from other types of infrasound, we analyzed the infrasonic signatures of 61 missile signals. All the data included herein are from signals recorded at Washington, DC, from missile launches at Cape Canaveral, Florida.

#### 2. EQUIPMENT AND ANALYSIS PROCEDURE

The recording station at Washington (Cook and Bedard, 1971) consisted of four microphones spaced 5 to 7 km apart in a quadrilateral. The signal from each microphone was transmitted over telephone lines to the laboratory and recorded on analog magnetic tape. Graphic recordings were reproduced from the tape and electronically filtered to give the passband shown in Fig. 1. These records were visually cross-correlated to yield azimuth and horizontal phase velocity (trace velocity) along the Earth's surface from time differences of arrival of points of equal phase at the microphones. For most signals we believe the azimuth to be accurate to  $\pm 2^\circ$ , the trace velocity to  $\pm 10$  m/s.

The determination that a signal was missile-related required both an arrival time from 60 to 80 minutes after a known launch time and an azimuth of arrival between 170 and 200 degrees. The distance and azimuth to Washington from the Cape are about 1215 km and 196 degrees. Our signals average 69.0 min travel time to the first recognizable correlation (start time) and 189.8

-3--



Figure 1. Passband of microbarograph system.

degrees azimuth. The former is consistent with generally accepted travel speeds, but the latter suggests a source different from the launch pad location. More is said of this in Section 4.

## 3. SIGNAL CHARACTERISTICS

The large variability of these signals precludes the showing of a typical example. However, all the signals are composed of one or more of five characteristics defined for the purpose of this report:

- 1) High-frequency-periods up to 10 s.
- 2) Middle-frequency-periods from 10 to 20 s.
- 3) Low-frequency-periods greater than 20 s.
- Pulse---a distinct and usually abrupt isolated wave of any frequency.
- Burst--a short-lived train of distinct, nearly monochromatic, high frequency waves.

-4-

These definitions are somewhat arbitrary, but Fig. 2 illustrates them. The figures are an overlay of only two traces aligned for best correlation for purposes of clarity. Analysis uses all four traces.

Figure 2a shows a signal containing only "high frequency" energy. Although 33 of the 61 total signals contain these frequencies only 5 were lacking any of the other characteristics. A typical example of a "middlefrequency" arrival is shown in Fig. 2b. This range is contained in 41 signals, 10 of them exclusively. The "low frequencies" shown in Fig. 2c usually occur near the end of an arrival whose maximum energy is contained at shorter periods. Occasionally, as in this example, thse longer periods dominate the entire signal in which higher frequency components show a much reduced amplitude. In 34 cases, periods longer than 20 s appeared but only twice without some other feature. Figure 2d is an excellent example of a late arriving pulse. Signal began at 0347 and ended near 0402, with some low-frequency energy showing in the figure. Three minutes later a pulse, about 3 times more energetic than anything else in the signal, appeared abruptly. One or more pulses was present in 21 of our arrivals but never alone. Figure 2e shows a "burst" of about 3 s period energy occurring more than 3 min after signal onset in the midst of longer periods. This characteristic was observed in only six signals and never alone. Figure 2f shows perhaps the closest thing to a typical missile signal. Most of the energy is at higher frequencies early and becomes lower with time. A pulse, although occurring more often near the end of a signal, is seen standing out in the middle of this example.

The Appendix lists all 61 missile-related signals and includes details of frequency, amplitude, azimuth, and trace velocity. Launch time and, where possible, the launch name and booster are also given.

-5-





-6-

Missile signatures in which a significant change in frequency with time occurs are nearly always from shorter to longer periods. Of 33 total signals showing large frequency changes, 26 had shorter periods at the onset. Only four began with longer periods and ended at higher frequencies; three were more complex and went in both directions.

Besides the 61 signals included herein, 23 others are probably missile related, but we were unable to determine a launch time even though there was a launch on the same day. Five others are possible but no launch could be verified on those days. All 28 of these signals are from the correct direction and exhibit the same general characteristics as the known signatures. None of these data were used in this report.

There were also 65 known launches for which we were operational but found no signals. Noisy background conditions were responsible for only part of this number. Table 1 shows the distribution of the background noise conditions during the expected time of arrival from known launches that were not detected and the distribution of the maximum amplitude, including pulses, of the known detections. Our failure to detect 54% of the launches whose expected arrival time occurred when the background was not greater than 1 dyn/cm<sup>2</sup> is most likely due to unfavorable propagation conditions or some feature of the missile itself that resulted in a weak acoustic generation process.

-7-

| Sector States        | Amplitude (dyn/cm <sup>2</sup> , zero-to-peak) |         |         |      |  |  |  |  |  |
|----------------------|------------------------------------------------|---------|---------|------|--|--|--|--|--|
|                      | 0.1-0.5                                        | 0.6-1.0 | 1.1-2.0 | >2.0 |  |  |  |  |  |
| Signals detected     | 20                                             | 19      | 14      | 8    |  |  |  |  |  |
| (%)                  | (33)                                           | (31)    | (23)    | (13) |  |  |  |  |  |
| Signals not detected | 24                                             | 11      | 12      | 18   |  |  |  |  |  |
| (%)                  | (37)                                           | (17)    | (18)    | (28) |  |  |  |  |  |

Table 1. Summary of Signal Statistics

## 4. STATISTICS

Figure 3 indicates the range of signal periods and horizontal trace speeds measured for these events. There seems no clear relationship between period and trace speed. However the presence of many signals with trace speeds higher than 360 m s<sup>-1</sup> provides one means of distinguishing this type of signal from surface explosions at similar distances. Acoustic energy from distant explosions usually travels with a horizontal trace speed near 340 m s<sup>-1</sup>. Although acoustic signals related to geomagnetic activity show such high speeds, the typical durations for such signals (hours), and the fact that systematic azimuth/time variations occur offer means of distinguishing geomagnetically related acoustic signals from those related to missile launches.

Figure 4 is a plot of maximum signal amplitude as a function of period. Except for a tendency for some of the larger amplitudes to occur at smaller periods, there does not seem to be a clear trend in the data. Most signals were detected with pressure levels less than 2  $\mu$ b (0-peak).



Figure 3. Signal period as a function of horizontal phase velocity.



Maximum Amplitude

Figure 4. Maximum signal amplitude as a function of period.

Figure 5 is a plot of signal duration as a function of travel time. Although the result is essentially a scatter plot, it does serve to show the bounds of both travel time (~60 to 80 min) and duration (~1 to 30 min). The signals of short duration (<10 min) are unusual from sources at distances greater than 1000 km.

Figure 6 is a plot showing the azimuth from which the signal arrived as a function of Julian day. These data indicate that the signals tend to arrive from more westerly azimuths in the summer and more easterly azimuths in the winter. The considerable variability probably reflects variability in the upper level winds. Figure 7 is an alternate presentation of this azimuth/ time-of-year trend showing that the signal travel time is related to the path



# Travel Time (minutes)

Figure 5. Signal duration as a function of travel time.



Figure 6. Signal azimiuth as a function of Julian day.



Figure 7. Signal azimuth as a function of travel time.

controlled by the upper level winds. The smallest travel times occur in the winter months (~60 min), the longest travel times occurring in the summer months (~80 min).

Figure 8 is a plot of horizontal trace speed for short duration pulses measured at the observatory as a function of the delay time from when the missile signature was first detected. The variation of measured trace speed indicates a variation of angle of incidence at the Earth's surface; the larger angles tend to occur with greater time delays (indicating longer paths). The implication is that variable propagation conditions control the fine structure. The existence of such structure in the presence of a long duration signal is one of the most distinctive features of this class of signal.



Time After Start (min)

Figure 8. Horizontal phase velocity as a function of time after start of signal.

The actual source of acoustic energy detected 1200 km away is still in question. We have two pieces of evidence that argue against the launch site itself as the origin. First, we were never able to detect any signals from several static firings of very powerful boosters at Huntsville, Ala., during the early 1960's even though the distance was less and we operated several times during very favorable noise conditions. Also the average azimuth of 61 signals was 189.8°, nearly 6° or approximately 125 km east from the launch pad location. The prevailing upper winds (westward in winter, eastward in summer) are not responsible for this difference (Georges and Beasley, 1971; Georges, 1971). The 33 signals received between mid-September and mid-March averaged 187.6°, and the summer average of signals was 192.2°. These numbers are consistent with a 2° to 3° azimuth shift, which would be expected on average because of the winds. These data suggest that the infrasound source is generated downrange, perhaps when the missile reaches supersonic speeds. This is in agreement with earlier conclusions (e.g., Balachandran et al., 1971).

#### 5. CONCLUDING REMARKS

We have provided statistics defining properties of measured far-field acoustic signatures from missile launches. Because we were unable to obtain details concerning launch characteristics (e.g., thrust, launch angle) we have not compared the far-field signals with launch details. We hope that this report may also serve as a basis for performing such a comparison.

Properties of the signatures provide information on long-range propagation effects. For example, Figs. 6 and 7 indicate the effects of the propagation path upon the azimuth-of-arrival, which varies over a range from about 182 to

-13-

198°. Also properties such as duration, period, and amplitude can be used to characterize this signal type. The feature most valuable in distinguishing between these signatures and signatures from other sources is the frequent occurrence of fine-structure in the form of impulsive regions of acoustic energy. A possible explanation of these pulse signatures occurring in a longer duration signal is the highly selective launching of acoustic energy by a missile bow wave. Highly directional acoustic energy in the source region could select one of a number of possible propagation paths.

#### 6. REFERENCES

Balachandran, N. K., W. L. Donn, and G. Kaschak, 1971. On the propagation of infrasound from rockets: Effects of winds. <u>J. Acoust. Soc. Am.</u> 50:397-404.

- Balachandran, N. K., and W. L. Donn, 1971. Characteristics of infrasonic signals from rockets. Geophys. J. R. Astron. Soc. 26:135-148.
- Bedard, A. J. Jr., 1971. Seismic response of infrasonic microphones. <u>J. Res.</u> <u>Natl. Bur. Stand.</u> 75C:41-45.
- Bedard, A. J. Jr., 1977. The d-c pressure summator: Theoretical operation, experimental test and possible practical uses. Fluidics Quart. 9:26-51.
- Bedard, A. J. Jr., 1978. Infrasound originating near mountainous regions in Colorado. J. Appl. Meteorol. 17:1014-1022.
- Bedard, A. J. Jr., and G. E. Greene, 1981. Case study using arrays of infrasonic microphones to detect and locate meteors and meteorites. <u>J. Acoust.</u> <u>Soc. Amer.</u> 69:1277-1279.

- Bowman, H. S., and A. J. Bedard, 1971. Observations of infrasound and subsonic disturbances related to severe weather. <u>Geophys. J. Roy. Astrom.</u> Soc. 26:215-242.
- Chrzanowski, P., G. Greene, K. T. Lemmon, and J. M. Young, 1961. Traveling pressure waves associated with geomagnetic activity. <u>J. Geophys. Res.</u> 66:3727-3733.
- Cook, R. K., 1962. Strange sounds in the atmosphere. 1. Sound 1:12-16.

Cook, R. K., and J. M. Young, 1962. Strange sounds in the atmosphere. 2. Sound 1:25-33.

- Cook, R. K., and A. J. Bedard, 1971. On the measurement of infrasound. Geophys. J. R. Astron. Soc. 26:5-11.
- Donn, W. L., E. Posmentier, U. Fehr, and N. K. Balachandran, 1968. Infrasound at long range from Saturn V, 1967. Science 162:1116-1120.
- Donn, W. L., N. K. Balachandran, and D. Rind, 1975. Tidal wind control of long-range rocket infrasound. J. Geophys. Res. 80:1662-1664.
- Georges, T. M., 1971. A program for calculating three-dimensional acousticgravity ray paths in the atmosphere. NOAA Tech. Rep. ERL 212-WPL 16, NOAA Environmental Research Laboratories, Boulder, Colo., 43 pp.
- Georges, T. M., 1973. Infrasound from convective storms: Examining the evidence. <u>Rev. Geophys. Space Phys. 11:571-594.</u>
- Georges, T. M., and W. H. Beasley, 1977. Refraction of infrasound by upperatmospheric winds. J. Acoust. Soc. Am. 61:28-34.

-15-

- Goerke, V. H., J. M. Young, and R. K. Cook, 1965. Infrasonic observations of the May 16, 1963, volcanic explosion on the Island of Bali. <u>J. Geophys.</u> Res. 70:6017-6022.
- Greene, G. E., and J. Howard, 1975. Natural infrasound: A one-year global study. NOAA Tech. Rep. ERL 317-WPL 37, NOAA Environmental Research Laboratories, Boulder, Colo., 153 pp.
- Kaschak, G. R., 1969. Long-range supersonic propagation of infrasonic noise generated by missiles. J. Geophys. Res. Space Phys. 74:914-918.
- Kaschak, G., W. Donn, and U. Fehr, 1970. Long-range infrasound from rockets. J. Acoust. Soc. Am. 48:12-20.
- Tahira, M., and W. L. Donn, 1983. Anomalous infrasound from Space Shuttle II and Skylab I. J. Acoust. Soc. Am. 72:461-464.
- Young, J. M., and G. E. Greene, 1982. Anomalous infrasound generated by the Alaskan earthquake of 28 March 1964. J. Acoust. Soc. Am. 71:334-339.

| Date     | Start<br>Time<br>(UT) |                                          | terval Period<br>(s)       | Max.<br>Ampl.<br>Zero-peak<br>(dyn/cm <sup>2</sup> ) | Az<br>(deg)       | Vel.<br>(m/s)     | Launch     |         |              |                                   |
|----------|-----------------------|------------------------------------------|----------------------------|------------------------------------------------------|-------------------|-------------------|------------|---------|--------------|-----------------------------------|
|          |                       | Interval                                 |                            |                                                      |                   |                   | Name       | Booster | Time<br>(UT) | Signal<br>Travel<br>Time<br>(min) |
| 3 /3 /59 | 0618                  | 0618-0621<br>0621-0627                   | 6-8<br>10-12               | 0.6<br>1.0                                           | 179               | 340               | Pioneer IV | Juno II | 0511         | 67                                |
| 8 /15/59 | 0152                  | 0153 <b>*</b><br>0154                    | 21<br>15                   | 1.0<br>0.5                                           | 198               | 360               | Beacon     | Juno II | 0031         | 81                                |
| 9 /9 /59 | 0832                  | 0832-0835<br>0835-0844                   | 5-8<br>11-17               | 0.2                                                  | 192               | 360               | Big Joe    | Atlas   | 0719         | 73                                |
| 10/29/59 | 0321                  | 0321-0328<br>0328-0336                   | 19-23<br>11-15             | 0.6                                                  | 183<br>187        | 335<br>370        |            | Thor    | 0212         | 69                                |
| 11/26/59 | 0831                  | 0831-0835<br>0835-0846                   | 2-7<br>20-25               | 1.0                                                  | 186               | 340               | Pioneer    | Atlas   | 0726         | 65                                |
| 12/17/59 | 0111                  | 0111-0112<br>0113-0114                   | 1-2<br>1                   | 0.1<br>0.2                                           | 201<br>187        | 475<br>369        |            | Thor    | 0003         | 68                                |
| 1 /14/60 | 1746                  | 1746–1751<br>1751–1753<br>1753–1803      | 16-19<br>8-10<br>18-22     | 0.5<br>1.2<br>0.6                                    | 191               | 400               |            | Thor    | 1135         | 71                                |
| 1 /27/60 | 0240                  | 0240-0248<br>0246*<br>0248-0259          | 6-9<br>6<br>15-20          | 0.6<br>2.8<br>0.7                                    | 189               | 360               |            | Atlas   | 0131         | 69                                |
| 5 /13/60 | 1030                  | 1030-1042                                | 14-21                      | 0.3                                                  | 193               | 370               | Echo       | Delta   | 0916         | 74                                |
| 6 /11/60 | 0745                  | 0745-0751<br>0749-0801<br>0800*          | 20-27<br>10-17<br>20       | 0.4<br>0.8<br>0.7                                    | 196               | 370               |            | Atlas   | 0630         | 75                                |
| 8 /12/60 | 1054                  | 1054-1100<br>1100-1107                   | 13-19<br>23-31             | 0.4<br>0.3                                           | 196               | 375               | Echo I     | Delta   | 0940         | 74                                |
| 9 /28/60 | 1543                  | 1543-1552<br>1554-1602                   | 12-17<br>20-24             | 0.3                                                  | 193               | 385               |            | Titan   | 1438         | 65                                |
| 10/13/60 | 1043                  | 1043–1058<br>1044–1051                   | 12-20<br>4-9               | 0.6                                                  | 189               | 360               | Air Force  | Atlas   | 0935         | 68                                |
| 11/23/60 | 1216                  | 1216-1219                                | 14-18                      | 0.4                                                  | 186               | 340               | Tiros II   | Delta   | 1113         | 63                                |
| 12/15/60 | 1015                  | 1015-1023                                | 3-9                        | 0.9                                                  | 190               | 360               | Pioneer    | Atlas   | 0910         | 65                                |
| 6 /23/61 | 0420                  | 0420-0438                                | 17-30                      | 0.5                                                  | 196               | 345               |            | Atlas   | 0301         | 79                                |
| 7 /7 /61 | 0610                  | 0610-0623                                | 13-18                      | 0.6                                                  | 197               | 390               | Disc 26    |         | 0451         | 79                                |
| 9 /13/61 | 1518                  | 1518-1526<br>1521-1522                   | 22-30<br>10-14             | 0.7                                                  | 196               | 360               | Mercury    | Atlas   | 1404         | 74                                |
| 10/2 /61 | 1931                  | 1931-1940                                | 3-7                        | 0.9                                                  | 194               | 390               | Air Force  | Atlas   | 1823         | 68                                |
| 11/22/61 | 2218                  | 2218-2225<br>2227*<br>2228-2233<br>2238* | 10-15<br>14<br>21-23<br>16 | 0.2<br>1.3<br>0.7<br>0.7                             | 181<br>188<br>184 | 380<br>390<br>435 |            | Atlas   | 2103         | 75                                |
| 7 /10/62 | 0950                  | 0950-1000                                | 17-19                      | 0.4                                                  | 193               | 335               | Telstar    | Delta   | 0835         | 75                                |
| 7 /18/62 | 1043                  | 1043-1053                                | 23-28                      | 0.6                                                  | 194               | 340               | Echo       | Thor    | 0930         | 73                                |
| 11/16/62 | 1852                  | 1852-1857                                | 12-16                      | 2.9                                                  | 193               | 355               |            | Saturn  | 1745         | 67                                |

APPENDIX (Continued)

| Date     | Start<br>Time<br>(UT) | Start Interval<br>Time<br>(UT)                       | Interval Period<br>(s)            | Max.<br>Ampl.<br>Zero-peak<br>(dyn/cm <sup>2</sup> ) |             | Vel.<br>(m/s) | Launch               |         |              |                                   |
|----------|-----------------------|------------------------------------------------------|-----------------------------------|------------------------------------------------------|-------------|---------------|----------------------|---------|--------------|-----------------------------------|
|          |                       |                                                      |                                   |                                                      | Az<br>(deg) |               | Name                 | Booster | Time<br>(UT) | Signal<br>Travel<br>Time<br>(min) |
| 6 /19/63 | 1101                  | 1101-1110<br>1118*                                   | 21 <b>-</b> 29<br>25              | 0.3<br>0.9                                           | 186<br>195  | 410<br>495    | Tiros III            | Delta   | 0950         | 71                                |
| 7 /26/63 | 1549                  | 1549–1556<br>1553–1606<br>1557*                      | 4-7<br>15-21<br>17                | 0.2<br>0.6<br>1.4                                    | 193         | 365           | Syncom II            | Delta   | 1433         | 76                                |
| 10/17/63 | 0347                  | 0347-0402<br>0405*                                   | 10-21<br>16                       | 0.3<br>1.0                                           | 188<br>187  | 310<br>380    | Air Force            | Atlas   | 0240         | 67                                |
| 11/27/63 | 2009                  | 2009–2016<br>2015–1025<br>2023*                      | 3-7<br>12-20<br>30                | 0.4<br>0.5<br>0.4                                    | 188<br>187  | 385<br>365    | Centaur              | Atlas   | 1903         | 66                                |
| 1 /29/64 | 1735                  | 1735-1738<br>1736*<br>1738-1739<br>1739-1742         | 3-5<br>6<br>3<br>22-30            | 0.6<br>2.0<br>1.7<br>0.3                             | 190<br>190  | 335<br>345    | Saturn V             | Saturn  | 1625         | 70                                |
| 8 /25/65 | 1633                  | 1633-1642<br>1639-1643                               | 5-10<br>15-21                     | 0.3                                                  | 195         | 380           | Oso-C                | Delta   | 1517         | 76                                |
| 11/6 /65 | 1949                  | 1949-1955                                            | 14-18                             | 0.6                                                  | 186         | 365           | Expl XXIX            | Delta   | 1839         | 70                                |
| 12/15/65 | 1444                  | 1444–1446<br>1446–1451<br>1449–1458                  | 2-3<br>5-8<br>11-17               | 0.2<br>0.4<br>0.4                                    | 188         | 335           | Gemini-6             | Titan   | 1337         | 67                                |
| 12/16/65 | 0843                  | 1457-1503<br>0843-0854<br>0847-0850                  | 13-19<br>28-32                    | 0.5                                                  | 183         | 340           | Pioneer VI           | Delta   | 0731         | 72                                |
| 5 /17/66 | 1628                  | 1628-1644<br>1633-1638<br>1644-1652                  | 12-19<br>23-30<br>19-22           | 1.2<br>0.9<br>0.5                                    | 195         | 385           | Gemini               | Atlas   | 1515         | 73                                |
| 8 /10/66 | 2034                  | 2034-2038<br>2938-2048                               | 23<br>3-5<br>12-15                | 0.4                                                  | 193         | 360           | Lunar<br>Orbiter I   | Atlas   | 1926         | 68                                |
| 8 /25/66 | 1822                  | 1822-1828<br>1828-1840                               | 4-8<br>20-35                      | 1.5<br>0.6                                           | 197         | 370           | Apollo 3             | Saturn  | 1716         | 66                                |
| 10/27/66 | 0014                  | 0014-0032                                            | 9-18                              | 1.1                                                  | 183         | 345           | Intelsat II          | Delta   | 2305         | 69                                |
| 11/7 /66 | 0029                  | 002 <b>9*</b><br>0030-0032<br>0040-0046              | 8<br>3-8<br>22-25                 | 1.5<br>1.6<br>0.4                                    | 190         | 335           | Lunar<br>Orbiter II  | Atlas   | 2321         | 68                                |
|          |                       | 0050*                                                | 16                                | 0.8                                                  | 177         | 425           | Contact VII          | 45100   | 1008         | 50                                |
| 11/11/66 | 2007                  | 2007<br>2007–2013<br>2013–2017<br>2017*<br>2014–2025 | 2-5<br>3-6<br>10-12<br>4<br>25-28 | 1<br>1<br>2<br>1                                     | 182         | 415           | Gemini XII           | ATIAS   | 1908         | 23                                |
| 12/7 /66 | 0322                  | 0322-0327                                            | 3-4                               | 0.3                                                  | (2)         |               | ATS-1                | Atlas   | 0212         | 70                                |
| 2 /5 /67 | 0219                  | 0219-0225<br>0225-0233                               | 2-7<br>20-26                      | 0.2                                                  | 184<br>173  | 350<br>380    | Lunar<br>Orbiter III | Atlas   | 0117         | 62                                |

APPENDIX (Continued)

| Date     | Start<br>Time<br>(UT) | art Interval<br>me<br>T)                                 | interval Period<br>(s)                       | Max.<br>Ampl.<br>Zero-peak<br>(dyn/cm <sup>2</sup> ) | Az<br>(deg)       | Vel.<br>(m/s)     | Launch             |         |              |                                   |
|----------|-----------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------------|-------------------|-------------------|--------------------|---------|--------------|-----------------------------------|
|          |                       |                                                          |                                              |                                                      |                   |                   | Name               | Booster | Time<br>(UT) | Signal<br>Travel<br>Time<br>(min) |
| 3 /23/67 | 0239                  | 0239-0240<br>0240-0242<br>0242-0247                      | 4-8<br>8-10<br>20-30                         | 1.5<br>1.0<br>0.4                                    | 187<br>182        | 345<br>340        | Intelsat II        | Delta   | 0130         | 69                                |
| 4 /6 /67 | 0439                  | 0439-0450<br>0448-0451<br>0457*                          | 28-33<br>10-12<br>16                         | 0.5<br>0.4<br>0.6                                    | 176               | 360<br>450        | ATS II             | Atlas   | 0323         | 76                                |
| 7 /1 /67 | / 1422                | 1422–1443<br>1434–1448                                   | 28-40<br>12-20                               | 0.7<br>0.4                                           | 185               | 405               | Navy               |         | 1315         | 67                                |
| 7 /14/67 | 1305                  | 1305–1315<br>1309*                                       | 20-30<br>15                                  | 0.2<br>0.3                                           | 192               | 370               | Surveyor IV        | Atlas   | 1153         | 72                                |
| 7 /19/67 | 1545                  | 1545*                                                    | 1-2                                          | 0.4                                                  | 185               | 440               | Explorer XXXV      | Delta   | 1419         | 86                                |
| 8 /1 /67 | 2346                  | 2346-2352                                                | 11-15                                        | 0.3                                                  | 188               | 345               | Lunar<br>Orbiter V | Atlas   | 2233         | 73                                |
| 8 /17/67 | 2227                  | 2227-2238                                                | 22-31                                        | 0.2                                                  | 190               | 320               | Minute Man         |         | 2119         | 68                                |
| 9 /7 /67 | 2317                  | 2317-2328<br>2330*<br>2339*                              | 22-28<br>20<br>21                            | 0.8<br>1.2<br>0.4                                    | 188<br>191<br>192 | 360<br>360<br>410 | Biosat II          | Delta   | 2204         | 73                                |
| 9 /8 /67 | 0906                  | 0906-0911<br>0909-0920<br>0926*                          | 4-7<br>19-30<br>24                           | 0.6<br>0.8<br>1.1                                    | 198<br>189<br>183 | 360<br>380<br>465 | Surveyor V         | Atlas   | 0757         | 69                                |
| 9 /28/67 | 0159                  | 0159-0206                                                | 5-7                                          | 0.1                                                  | 189               | 360               | Intelsat II        | Delta   | 0045         | 74                                |
| 11/6 /67 | 0040                  | 0040 <b>*</b><br>0040–0046                               | 5<br>2-4                                     | 3.2                                                  | 188<br>186        | 340<br>345        | ATS III            | Atlas   | 2337         | 63                                |
| 11/7 /67 | 0840                  | 0840-0847<br>0845-0853<br>0859*                          | 3-6<br>22-27<br>33                           | 0.8<br>0.6<br>0.4                                    | 187<br>173<br>174 | 360<br>360<br>425 | Surveyor VI        | Atlas   | 0739         | 61                                |
| 11/9 /67 | 1302                  | 1302-1307<br>1307-1313<br>1315-1320                      | 3-5<br>10-15<br>38-52                        | 1.0<br>12.<br>6.                                     | 179<br>187<br>176 | 370<br>355<br>415 | Apollo IV          | Saturn  | 1200         | 62                                |
| 1 /22/68 | 2349                  | 2349-2354<br>2354-2357<br>2357<br>2357-2359<br>2359-0006 | 3-6<br>10-12<br>4-5<br>3-5<br>14-20<br>23-61 | 0.9<br>2.1<br>4.5<br>1.1<br>1.0                      | 182<br>193        | 355<br>345        | Apollo V           | Saturn  | 2248         | 61                                |
| 8 /10/68 | 2341                  | 2341-2350<br>2350-0002                                   | 3-5<br>11-15                                 | 0.4                                                  | 192               | 360               | ATS IV             | Atlas   | 2233         | 68                                |
| 10/11/68 | 1606                  | 1606-1610<br>1610-1615<br>1615-1620                      | 3-4<br>6-8<br>9-16                           | 0.4                                                  | 192               | 355               | Apollo VII         | Saturn  | 1503         | 63                                |
|          |                       | 1620-1630                                                | 33-40                                        | 0.8                                                  | 191               | 370               |                    |         |              |                                   |
| 12/19/68 | 0144                  | 0144-0149<br>0145-0153<br>0149*                          | 13-18<br>4-7<br>10                           | 0.4<br>0.4<br>0.9                                    | 190               | 360               | Intelsat III       | Delta   | 0032         | 72                                |
|          |                       | 0149-0158<br>0206*                                       | 22-33<br>40                                  | 0.4<br>0.6                                           | 199               | 410               |                    |         |              |                                   |

APPENDIX (Continued)

|          |                       |           |               |                                                      |             |               | Launch       |         |              |                                   |
|----------|-----------------------|-----------|---------------|------------------------------------------------------|-------------|---------------|--------------|---------|--------------|-----------------------------------|
| Date     | Start<br>Time<br>(UT) | Interval  | Period<br>(s) | Max.<br>Ampl.<br>Zero-peak<br>(dyn/cm <sup>2</sup> ) | Az<br>(deg) | Vel.<br>(m/s) | Name         | Booster | Time<br>(UT) | Signal<br>Travel<br>Time<br>(min) |
| 12/21/68 | 1355                  | 1355-1403 | 3-8           | 1.4                                                  | 189         | 345           | Apollo VIII  | Saturn  | 1251         | 64                                |
|          |                       | 1358-1403 | 10-18         | 1.6                                                  |             |               |              |         |              |                                   |
|          |                       | 1401-1406 | 22-28         | 0.4                                                  | 185         | 360           |              |         |              |                                   |
| 3 /3 /69 | 1705                  | 1705-1709 | 3-9           | 6.7                                                  | 189         | 330           | Apollo IX    | Saturn  | 1600         | 65                                |
|          |                       | 1716*     | 31            | 8.1                                                  | 191         | 410           | mporro in    | Jacuth  | 1000         | 00                                |
| 5 /22/69 | 0316                  | 0316-0322 | 8-20          | 0.6                                                  |             |               |              |         |              |                                   |
|          |                       | 0322-0337 | 19-26         | 0.6                                                  | 194         | 345           | Intelsat III | Delta   | 0200         | 76                                |
| 7 /16/69 | 1431                  | 1431-1443 | 2-5           | 2.2                                                  | 173         | 340           | Apollo XI    | Saturn  | 1333         | 50                                |
|          |                       | 1443-1446 | 15-30         | 0.8                                                  |             | 510           | MPOILO MI    | Sacurn  | 1332         | 39                                |
|          |                       | 1446-1500 | 10-20         | 1.3                                                  | 199         | 360           |              |         |              |                                   |
|          |                       | 1500*     | 35            | 3.1                                                  | 202         | 400           |              |         |              |                                   |

\* Pulse

(1) Amplitude uncertain because difficulties with noise reducing array.
(2) Only two channels operational.